Nicolo Bartolini

Bonus: funzione input() e type casting
) Le strutture di controllo
Argomenti
Condizionali (if, else, elif)

Ciclo while

— Bonus: funzione input() e type casting
| e strutture di controllo
Condizionali (if, else, lif)

Ciclo while

Le funzioni ritornano sempre un valore

Ritornare significa che la funzione restituisce un valore, quindi ¢ come se al posto del punto in cui la funzione viene chiamata ci fosse il risultato della
sua esecuzione. Linterprete esegue il codice della funzione e utilizza il risultato “per sostituire” il punto in cui viene chiamata.

Ogni funzione in Python ritorna sempre un valore. Questo concetto € fondamentale per comprendere appieno il
modo in cui le funzioni devono essere utilizzate.

def la, b)

Abbiamo visto che quando scriviamo noi una funzione, possiamo specificare cosa

: . : : eturn a + b
ritornera questa funzione attraverso la parola chiave return. reLuri 4 D

Nel codice qui sotto, la variabile x conterra il valore 3, che € il valore di ritorno della La funzione somma prende due
funzione somma con i parametri a e b impostati rispettivamente al e 2. La cosa argomenti a e b e ritorna la loro somma

da comprendere € che la variabile x contiene quel risultato, non la funzione stessa.

N.B.: l'istruzione return viene utilizzata soltanto dentro le funzioni create da noi, per specificare cosa ritorna la funzione. Non deve essere usata fuori.

Se non si salva il risultato di una funzione in una variabile, invece, Il suo valore di
ritorno viene perso per sempre e diventa inutilizzabile, come nel secondo

€~ esempio qui a sinistra.

4

Tipo di ritorno

E se volessimo creare una funzione che fa solo delle cose senza restituire niente?
La risposta e che si puo fare. Altri linguaggi obbligano l'inserimento della parola chiave return, ma Python no.

Quando una funzione, in Python, non possiede al suo interno un'istruzione retuxrn, allora questa funzione,

idealmente, non restituisce nulla. Il nulla in Python, pero, € il valore None, di tipo NoneType. Quindi anche se la
funzione non restituisce nulla, in realta restituisce None. In questi casi ha senso non assegnare il risultato della
funziona a una variabile.

function) def

Un esempio di funzione che non restituisce nulla & la funzione built-in print (). Questo
tipo di funzioni eseguono delle operazioni (print () stampa qualcosa nello schermo)
Mma poi non restituiscono alcun valore. Come possiamo vedere nella figura, I'|DE ci aiuta a
capire qual ¢ il tipo di ritorno di una funzione portandoci il mouse sopra.

Il concetto di tipo di ritorno € fondamentale e fornisce un'ulteriore utilita ai gia importantissimi tipi di dati
Introdotti nella parte precedente. Infatti, le funzioni, generalmente, possiedono un tipo di ritorno che indica di che
tipo sara il valore che viene restituito dalla funzione stessa. Questa cosa e fondamentale per capire come si
deve lavorare con il dato che restituisce la funzione. Ad esempio, se una funzione restituisce un booleano, non si
potra usare per fare un'addizione.

5

La funzione built-in input ()

La funzione built-in input () & una funzione che permette di introdurre dell'interattivita all'interno dei propri
programmi in Python. Il suo scopo € quello di raccogliere dati dall’'utente.

Introduciamo la firma delle funzioni, attraverso la quale possiamo comprendere come utilizzarle. Portando il mouse
su una funzione built-in, I'IDE ci fornisce delle informazioni nella seguente forma:

ELENCO DEI PARAMETRI (IN QUESTO CASO 1)

() input|(prompt: object = "")| -> str
Nome Nome del Tipo del parametro Tipo di
della parametro (ignorate object) ritorno della
funzione funzione

Quindi, la funzione input(), & una funzione che accetta un unico parametro chiamato prompt, di tipo object
(per ora consideriamo che sia di tipo stringa), il quale possiede un valore di default paria ", ovvero una stringa
vuota e che come tipo di ritorno ha str, quindi restituisce sempre un valore di tipo stringa.

Quando un parametro di una funzione possiede un valore di default, significa che quel parametro puo essere
omesso quando la funzione viene chiamata e, se viene omesso, assume automaticamente quel valore.

6

Utilizzo della funzione input ()

Come abbiamo detto, la funzione built-in input () viene utilizzata per raccogliere dei dati dall'utente. Abbiamo
anche visto che possiede un parametro opzionale chiamato prompt. Questo prompt serve per stampare sul
terminale una stringa a propria scelta. Dunque, quello che fa la funzione input () & stampare I'eventuale prompt (o
non stampare nulla se prompt non viene specificato) e poi mettersi in ascolto di qualcosa scritto dall'utente.
Quando l'utente scrive qualsiasi cosa e poi clicca invio, allora la funzione input() restituisce una stringa contenente

cio che ha scritto l'utente.

Crelamo una variabile chiamata
qualcosa_ottenuto_da_utente

11

“Ciao utente, 1nseriscl qualcosa:

Eseguendo questo codice, nel terminale comparira:

Lo spazio vuoto alla fine della stringa viene utilizzato per motivi estetici.
Cilao utente, 1nseriscl qua lcosa: I Omettendolo, infatti, il testo inserito dall'utente sarebbe appiccicato al prompt.

Il rettangolo finale (nel mio caso giallo, ma nel vostro potrebbe essere diverso) indica che il programma é in attesa
di qualcosa inserito dall'utente. L'inserimento di quel qualcosa e il clicco su “Invio” fara proseguire il codice e
inserira la stringa contenente cio che ha inserito l'utente all'interno della variabile qualcosa_ottenuto_da_utente.

7/

Type casting

Nella slide 6, abbiamo analizzato la firma della funzione input(), osservando che ha come tipo di ritorno str. Cio
significa che tutto cio che restituisce la funzione input () & sempre di tipo st r. Utilizziamo questa caratteristica
per introdurre il concetto di type casting (o casting di tipo).

Supponiamo di voler far inserire dall'utente due numeri e di volerli sottrarre. Per fare cio utilizziamo due volte la
funzione input () chiedendo due numeri all'utente e poi printiamo la loro differenza, come nel codice seguente.

Per risolvere queste problematiche si
effettua il cosiddetto type casting,
ovvero una conversione forzata di un
valore in uno specifico tipo.
Ovviamente, Il valore che si vuole
convertire deve essere convertibile. Ad
Inseriscl 1. primo numero: 3 esempio, non si pud convertire la

Inserisci 1l secondo numero: 1

Traceback (most recent call last): | stringa “quaranta” inun 1nt, cosi come
File "/Users/nickb/Dev/prova.py", line 3, 1n <module> y e
print('"La sottrazione di ", numerol, " e ", numero2, " e ", numerol — numero2) Nnon Si puo convertire la strlnga 40 17”.

Invece, si pud convertire la stringa “12”.

Osserviamo, pero, che I'esecuzione del codice porta a un errore di
tipo, indicando che l'interprete non riesce ad eseguire una
sottrazione tra due valori di tipo str.

L R Tt Y T e e T A A e e e T Y

TypeError: unsupported operand type(s) for -: 'str' and 'str'

od C'é uno spazio in mezzo.

https://www.figma.com/slides/2NDNOQiNbXBcNpRNlzhW2y/3---Strutture-di-controllo?node-id=2001-16

Come si eftettua il type casting in Python?

Per effettuare operazioni di type casting (d'ora in avanti lo chiameremo solo “casting”), Python fornisce delle
funzioni built-in che si chiamano come il tipo verso cui effettuare il casting.

» Lafunzione (da_convertire) restituisce il valore da_convertire convertito in

tipo . Il valore da convertire pud essere un (restituisce lo stesso numero), un
(restituisce lo stesso numero senza parte decimale) o una str (cerca di
verificare la presenza di numeri all'interno della stringa e se |i trova li restituisce in tipo
).

« Lafunzione (da_convertire) restituisce il valore da_convertire convertito
IN tipo .l comportamento e analogo a quello della funzione

» Lafunzione str(da_convertire) restituisce il valore da_convertire convertito in
tipo str. |l valore da convertire puo essere qualsiasi tipo di valore, quindi un ,un

,una str,unbool, un , ma anche altri tipi che scopriremo piu avanti.

 Lafunzione bool(da_convertire) restituisce il valore da_convertire convertito
In tipo bool. Questa funzione restituisce sempre True, tranne quando
da_convertire éunint paria , un float pari a , una stringa vuota (”"") oppure un

, casistiche in cui restituisce False.

Come risolvere il problema di input()?

Ora che abbiamo introdotto il casting, come possiamo risolvere il problema che abbiamo incontrato nella slide 8
con la funzione input()?

La risposta risiede, ovviamente, nel castare le variabili che contengono il risultato della funzione input () aun tipo
numerico. Scegliamo, iIn modo casuale, di voler lavorare con i . Dunque, possiamo utilizzare la funzione
per castare in i valori inseriti dall'utente, che sono restituiti da input () sotto forma di str. Il codice, diventa:

Per rendere il tutto pit compatto, si pud anche passare il risultato di input () direttamente alla funzione float()
e inserire il risultato della funzione float () direttamente durante la creazione delle variabili, nel seguente modo:

Inseriscli 1L primo numero: 2
% Inseriscl 1l secondo numero: 3.6
La sottrazione di 2.8 e 3.6 e -=1.6

https://www.figma.com/slides/2NDNOQiNbXBcNpRNlzhW2y/3---Strutture-di-controllo?node-id=2003-148

Esempio dell'utilizzo di input ()

PROBLEMA: Scrivere un programma che effettua semplici calcoli. Il programma deve:

1.
2.
3.
4.
D.
O.

Scrivere un messaggio di benvenuto all'esecuzione, chiedendo il nome dell’'utente e pol salutarlo.
Chiedere all'utente tre numeri qualsiasi.

Sommare | tre numeri € mostrare il risultato all'utente.

Chiedere un quarto numero all'utente.

Sottrarlo alla sommma fatta precedentemente e stampare il risultato di tale sottrazione.

Salutare 'utente.

Note e consigli aggiuntivi:

Commentare adeguatamente il codice per esplicare chiaramente tutti i passaggi svolti. Questa richiesta € utile
per abituarsi a scrivere commenti nel codice, molto importanti.

Utilizzare dei print() intermedi che non sono richiesti nella consegna principale, se necessario. Questi print()
possono tornare molto utili guando non si capisce perché il programma si comporta in modo anomalo.
Rendere il programma “accessibile”, spiegando chiaramente, attraverso le stampe, quello che sirichiede
all'utente e quello che si mostra all'utente.

Si suppone che l'utente non si comporti in modo anomalo e che quindi, se gli viene richiesto di inserire un
numero intero, egli inserisca davvero un numero intero.

11

O 9 PS N.B.: Vi ricordo che se un problema e risolvibile, lo e in infiniti modi.
SOlUZlone dell esem 10 Quindi ci sono infinite soluzioni corrette. Questa e solo la mia
soluzione, una tra le infinite possibili.

Ricordiamoci che un programma € una sequenza di istruzioni. Quindi, svolgiamo l'esercizio ragionando istruzione
per istruzione leggendo, step dopo step, la consegna.

“Step I: Il programma deve (1.1) scrivere un messaggio di benvenuto all’esecuzione, chiedendo il
nome dell’utente e poi (1.2) salutarlo.”

Abbiamo suddiviso lo step 1 della consegna in due sotto-step, che sono le possibili istruzioni per Python. Per
implementare lo step 1.1 possiamo utilizzare la funzione input() sia per dare il benvenuto all'utente che per
memorizzare il suo nome. ll codice €, quindi, il seguente:

Per quanto riguarda lo step 1.2, & sufficiente utilizzare la funzione print() per salutare I'utente utilizzando il suo
nome, che abbiamo memorizzato nella variabile nome_utente.

Notiamo I'attenzione posta nell”accessibilita”, stampando delle stringhe che siano ben formate e ben scritte (es.:
maiuscole corrette e spazi vuoti alla fine degli input), caratteristiche che sono inutili ai fini del nostro esercizio, ma
che é bene apprendere per scrivere programmi che non facciano sentire I'utente come un pesce fuor d'acqua.

14/

12

O 9 PS N.B.: Vi ricordo che se un problema e risolvibile, lo e in infiniti modi.
SOlUZlone dell esem 10 Quindi ci sono infinite soluzioni corrette. Questa e solo la mia
soluzione, una tra le infinite possibili.
“Step 2: Il programma deve chiedere all’'utente tre numeri qualsiasi.”

In questo caso non abblamo sotto-step, quindi possiamo direttamente tradurre la consegna in Python.

Come e specificato anche nei commenti, io ho scelto di printare una stringa che chiede all'utente direttamente di
iInserire tre numeri qualsiasi. Per questo motivo mi € sembrato superfluo chiedere nuovamente il numero da inserire
nel prompt di ogni 1nput. Tuttavia, questa € una scelta totalmente stilistica che non intacca minimamente |l
funzionamento del programma e il raggiungimento dell'obiettivo.

Un'altra cosa che puo essere fatta in modo diverso € il casting. Infatti, io ho effettuato il casting della stringa
ottenuta dagli input () a float passando direttamente la funzione input() alla funzione float(). Come
abbiamo visto nella slide 10, si puo fare anche separatamente senza intaccare il funzionamento del programma.

13

https://www.figma.com/slides/2NDNOQiNbXBcNpRNlzhW2y/3---Strutture-di-controllo?node-id=2004-207

O 9 PS N.B.: Vi ricordo che se un problema e risolvibile, lo e in infiniti modi.
SOlUZlone dell esem 10 Quindi ci sono infinite soluzioni corrette. Questa e solo la mia
soluzione, una tra le infinite possibili.
“Step 3: Il programma deve (3.1) sommare i tre numeri e (3.2) mostrare il risultato all’'utente.”

Possiamo risolvere lo step 3.1in unariga e lo step 3.2 in un'altra. Il codice ¢ il seguente:

“Step 4. Il programma deve chiedere un quarto nhumero all'utente.”

Notiamo, nellinput () qui sopra, che abbiamo effettuato la concatenazione della stringa prompt, non attraverso
le virgole (come nei print), ma attraverso la somma di stringhe. Questo perché la concatenazione di stringhe

tramite virgole & disponibile solo nella funzione print () e non nella funzione input().
Osservazione importante: se avessimo dovuto inserire tra le stringhe una variabile contenente un numero,

avremmo dovuto castarlo a stringa con la funzione str (). Ad esempio:

14

O 9 PS N.B.: Vi ricordo che se un problema e risolvibile, lo e in infiniti modi.
SOlUZlone dell esem 10 Quindi ci sono infinite soluzioni corrette. Questa e solo la mia
soluzione, una tra le infinite possibili.
“Step 5: Il programma deve (5.1) sottrarlo alla somma fatta precedentemente e (5.2) stampare il risultato di tale sottrazione.”

Anche in questo caso, la soluzione e rapida:

Tuttavia, visto che non dobbiamo piu utilizzare questo risultato in parti successive del codice, possiamo evitare la
creazione di una nuova variabile e risolvere questo step in un'unica riga:

“Step 6: Il programma deve salutare l'utente.”

Dopo tutti gli step precedenti, questo € un gioco da ragazzi:

15

Altri esercizi

Propongo altri esercizi da svolgere sull'argomento input () e casting. Sono sempre la “stessa solfa” di quello
appena descritto, pero svolgerli aiuta ad abituarsi a scrivere codice e a capire meglio come funziona il tutto.

@ Scrivere un programma che permetta di convertire un valore in una specifica unita di misura in un’altra unita
di misura. Le unita di misura di partenza e di arrivo devono essere predeterminate, ovvero si chiede all'utente
di inserire un valore, ad esempio, in miglia e il programma lo converte in kilometri. Dunque, il programma non
deve funzionare in base all’'unita di misura inserita dall’'utente, ma e il programma stesso a specificare I'unita
di misura richiesta.

@ Scrivere un programma che permetta di calcolare I'area di un triangolo (o di un‘altra forma geometrica). |l
programma deve reperire dall'utente i dati di cui ha bisogno, effettuare il calcolo e mostrare Il risultato.

@ Scrivere un programma che permetta di calcolare il valore futuro di un investimento. Il programma deve
accettare, da parte dell’'utente, il quantitativo di denaro da investire, il tasso di interesse e Il numero di anni di
durata dellinvestimento. Il programma deve calcolare il guantitativo di denaro che si avra dopo il numero di
anni inserito con il tasso di interesse inserito.

N.B.: Ogni stampa nel terminale deve essere esplicativa e chiara. Ad esempio, € meglio non eseguire
print(area_triangolo), maeseguire print(“L’'area del triangolo é&: ", area_triangolo).

16

Bonus: funzione input() e type casting
— Le strutture di controllo
Condizionali (if, else, lif)

Ciclo while

Flusso di esecuzione di un programma

Finora abblamo visto programmi che eseguono un elenco di istruzioni sequenzialmente, dalla prima all'ultima. |l
modo in cui un programma esegue le istruzione € chiamato flusso di esecuzione. Il flusso che abbiamo incontrato
finora € quello schematizzato nellimmagine seguente:

4) 4) 4) 4) 4)
Il numero viene Il numero viene Si effettuala Si stampai il
% memorizzato in una % % memorizzato in una % differenza trai due risultato sullo
variabile numerol variabile numero2 numeri schermo

_ J - J . 4 - J . J

Tuttavia, anche considerando gli esercizi svolti e proposti nella sezione precedente, € evidente che con questo
approccio limitato, le opzioni per la creazione di programmi sono estremamente limitate. In pratica, poiché il flusso
del programma € unidirezionale, tutti i programmi scritti in questo modo risultano essere sostanzialmente simili,
seppur contestualizzati in modi differenti.

Naturalmente, il processo di programmazione non si limita a questo punto. Al contrario, questo rappresenta appena
linizio di un lungo percorso. A questo punto entrano in gioco le strutture di controllo, che consentono di
modificare radicalmente il funzionamento finora esaminato e di aprire le porte a innumerevoli nuove opportunita
di sviluppo.

I8

e strutture di controllo

Le strutture di controllo sono elementi fondamentali della 1 ““”(';m e
programmazione. Esse consentono di modificare il normale flusso di

esecuzione di un programma, indirizzandolo verso percorsi diversi da
quello tradizionale finora esaminato. Questo significa che possono

Stampa che il numero Stampa che il numero

iInfluenzare significativamente il comportamento del software. & positivo & negativo

Le strutture di controllo si suddividono principalmente in due categorie:
condizionali e cicli. Le strutture condizionali modificano il flusso del
programma in base al valore di verita di condizioni specificate (booleani).
| cicli, invece, consentono al programma di iterare (ripetere pit volte) su
un insieme di istruzioni, ripetendo l'esecuzione fino al soddisfacimento di
determinate condizioni di uscita. Finché i

numero é < 10

In Python, la struttura condizionale € I'1 {, arricchito con le istruzioni
ed

| cicli di Python, invece, sono il ciclowhile eil ciclo for.

19

Bonus: funzione input() e type casting
| e strutture di controllo
— Condizionali (if, else, elif)

Ciclo while

e strutture condizionali

Le strutture condizionali sono gli strumenti essenziali
che permettono al programma di “prendere decisioni”. A
livello tecnico, le strutture condizionali eseguono diversi
blocchi di codice in base al valore di verita di una
specifica condizione. In altre parole, in base al valore
booleano della condizione (True o False), il blocco di
codice corrispondente viene 0 non viene eseguito.

Il vantaggio dell’'utilizzo delle strutture condizionali € che
permette di rispondere dinamicamente agli input che,
per definizione, sono dinamici. Un ulteriore vantaggio e
che il codice, con l'utilizzo delle strutture condizionali, €
ovviamente piu intelligente e flessibile e si adatta a
molteplici situazioni, piuttosto che seguire un ordine
preciso, prestabilito e immutabile.

L'utente @ minorenne

L'eta é < 18?

L'utente e
maggiorenne

L'eta é < 70?

L'utente c’ha una
certa eta

21

Listruzione 1 {

L'istruzione 1T verifica il valore di verita di una specifica e, se tale valore risulta vero (True), allora
esegue il blocco di codice corrispondente.
La sintassi € la seguente:

17 .
{blocco di codice da esegulire se la e True>

——

Notiamo che sono presenti 4 spazi (una tabulazione) che, come ricordiamo dal modo in cui si creano le funzioni,
definiscono, in Python, un blocco di codice indentato.

Una e un’'espressione che verifica la verita di qualcosa, generalmente confrontando due valori o
confrontando piu condizioni. Esempi di condizione:

11

all lal + + llSiII llSi,’ and

True True False False Dipende da variabile eta

22

[istruzione el se

L'istruzione else, che si traduce con “altrimenti”, € un'istruzione che viene aggiunta all'istruzione 1f e permette di
eseguire un blocco di codice quando la condizione dell'1 f risulta falsa.
La sintassi € la seguente:

1§
Se True

else:
altrimenti

Di seguito un esempio dell'utilizzo della struttura 1 f-else:

numero = input(“"Inseriscli un numero 1lntero: ")
1f numero >= O:
‘ print("Il numero & positivo")

else:
‘ print("I1l numero e negativo")

23

Listruzione el 17

L'istruzione el if, che sta per “else if”, € un’istruzione che viene aggiunta all'istruzione 1§ e permette di eseguire un
blocco di codice quando la condizione dell'1§ risulta falsa e si vuole verificare un’ulteriore condizione. Deve
essere aggiunta prima di un eventuale else, che non e obbligatorio.

La sintassi € la seguente:

17

{blocco di codice da eseguire se la e True>
elif

{blocco di codice da eseguire se la e True>
else:

{blocco di codice da eseguire altrimenti>

Come gia specificato, le righe 5 e 6 non sono obbligatorie.
Inoltre, si possono avere molteplici elif all'interno di una struttura 1.

24

1 annidati

E possibile annidare molteplici strutture if (-elif-else) allinterno di strutture gia esistenti. Questa pratica &
molto utile per evitare di scrivere condizioni troppo lunghe e complesse. Tuttavia, € bene utilizzarla con
parsimonia, per evitare che il codice diventi una scaletta di 1 f, risultando poco leggibile: € meglio non andare oltre
15 1 annidati.

if eta >= 18:
if registrato:
1t accettato termini:

if eta >= 18 and registrato and accettato termini: ‘ print(“Accesso consentito.”)

‘ print(“"Accesso consentito.") else:

else: ‘ print("Devi accettare 1 termini.")

‘ print("Accesso negato.") else:
‘ print(“"Non sei registrato.”)
else:
print("Devl essere maggiorenne.")

25

Esercizi sugli 1 da svolgere insieme

@ Scrivere un programma che, a partire da un numero intero inserito dall'utente, dica se tale numero e pari o
disparil.

@ Scrivere un programma che, a partire da due numeri interi inseriti dall' utente, dica qual € il numero maggiore
tra | due oppure se sono uguall.

@ b Scrivere lo stesso programma, ma con tre numeri accettati dall’'utente.

@ Scrivere un programma che chieda all’'utente una stringa composta da un solo carattere. Se la stringa fornita
dall'utente € piu lunga di un carattere restituire un errore e terminare il programma. Altrimenti printare se la
stringa € una vocale oppure no.

@ Scrivere un programma che chieda all’'utente il suo reddito annuo e calcoli 'ammontare delle tasse dovute
basandosi su semplici fasce di reddito:
* Redditi fino a 10.000€: esenti da tasse.
» Redditi superiori a 10.000€ e fino a 20.000€: tassati al 10%.
» Redditi superiori a 20.000€ e fino a 30.000€: tassati al 20%.
* Redditi superiori a 30.000€: tassati al 30%.
Il pbrogramma deve mostrare lammontare delle tasse dovute secondo le suddette regole.

26

Esercizione

Creare un‘applicazione bancaria che permette di effettuare un prelievo o un deposito monetario.

l. Il programma deve permettere di effettuare il login chiedendo, separatamente, il nome utente e la password. Ci
sono solo due utenti registrati (vedi sotto). Se il nome utente o la password sono errati (= la coppia non &
corretta oppure il nome utente non esiste), printare un messaggio di errore e terminare il programma.

2. Se il login e corretto, stampare il bilancio attuale del conto e chiedere se l'operazione desiderata e “prelievo” o
“deposito”. Qualunque altro inserimento risulta nella terminazione del programma con un print di errore.
Aiutino: op = input(”Prelievo (p) o deposito (d)? ") # L’utente quindi deve inserire la
stringa “p” o “d”, tutto il resto non e valido
3. Se l'operazione e di deposito, chiedere la cifra (si assume che l'utente non faccia lo stupido e inserisca sempre
un numero intero), aggiornare il totale del conto e stamparlo a video, terminando poi il programma.
4. Se I'operazione ¢ di prelievo, invece, chiedere la cifra (anche qui si assume che I'utente inserisca sempre un
numero intero) e verificare che il bilancio sia sufficiente. Se lo & detrarlo dal totale e stampare il nuovo bilancio a

video, terminando poi il programma. Se non lo € terminare il programma con un messaggio di errore.
DATABASE:

userl = “nick” pswl = “ildrugodragol2” bilanciol = 200
user?2 = “biero” psw2 = “FerrariPurosangue” bilancio2 = 3000
user2 = “ElonioMuschio” psw2 = “mars_emperor” bilancio2 = 10000

27

Bonus: funzione input() e type casting
| e strutture di controllo
Condizionali (if, else, lif)

—> Ciclo while

I cicli

| cicli sono fondamentali per consentire al programma di ripetere
operazioni (iterare) in modo efficiente. Dal punto di vista tecnico, i cicli
eseguono un blocco di codice ripetutamente fintanto che una
condizione specifica & soddisfatta (True). In sostanza, quando la
condizione e True, il blocco di codice viene eseguito e la condizione viene
nuovamente valutata. Se la condizione rimane True, il blocco di codice
viene ripetuto, continuando cosl fino a quando la condizione risulta True.

Il vantaggio dell'utilizzo dei cicli e che permettono di automatizzare e
semplificare compiti che richiederebbero ripetizioni di codice. In Python
esistono due cicli: il ciclowhile el ciclo fox. Il ciclo while sibasa sulla
valutazione di una condizione booleana. ll ciclo for, invece, € quello che in
altri linguaggi di programmazione si chiama for-each. Infatti, non si basa
sulla valutazione di una condizione booleana, ma sull’'esplorazione di tutti
gli elementi di una specifica struttura dati, ad esempio una lista. Per
guesto motivo, analizzeremo il ciclo for separatamente.

Finché
contatore <=
numero

Stampa il doppio del
numero

29

llciclownhile

L'istruzione while verifica il valore di verita di una specifica e, se tale valore risulta vero (True), allora
esegue il blocco di codice corrispondente. Dopo tale esecuzione, la viene nuovamente valutata g, se
risulta di nuovo True, il blocco di codice viene rieseguito. Cio succede fintantoché la condizione risulta True.

La sintassi € la seguente:

while

{blocco di codice da esegulire se la e True>
Loop infinito
Il ciclo while puod causare I'entrata in un loop (ciclo) infinito. Se la risulta sempre True senza poter
essere modificata, infatti, 'esecuzione del blocco di codice contenuto all'interno del ciclo si ripetera all'infinito. Cio
puoO essere un problema, ma in alcune situazioni, invece, puo essere necessario, come vedremo. ?

while True:
Per terminare I'esecuzione di un

{blocco di codice eseguito indefinitamente> programma in loop infinito, si deve

utilizzare la combinazione di tasti Ctrl+C

30

Variabile contatore

La modalita in cui é stata introdotta la struttura del ciclo while potrebbe far pensare che venga utilizzata solo con
condizioni booleane complesse e ben definite. Questo € certamente vero. Tuttavia, il ciclo while viene
maggiormente impiegato quando si desidera eseguire un blocco di codice un numero specifico di volte. Per
ottenere questo risultato, di solito si utilizzano delle variabili dedicate, comunemente chiamate contatori. Queste
variabili sono interi inizializzati a @ e il loro valore viene modificato all'interno del ciclo (incrementato o
decrementato) fino a quando diventa maggiore o minore di un numero specifico. In questo modo, il ciclo viene
eseguito un numero preciso di volte.

= 0 L'espressione contatore < 10 rappresenta
while < 10: comunque una condizione booleana. Questa
specifica sui contatori viene fornita per illustrare

<{blocco di codice da eseguire 10 volte> I'uso comune dei cicli while. Dal punto di vista

1 sintattico, il funzionamento rimane invariato.
In questo modo, finché la variabile sara minore di 10, il blocco di codice verra eseguito aripetizione.
Allo stesso tempo, essendo inizializzata a @ e incrementata (+=) di 1 ad ogni iterazione, il blocco di

codice verra eseguito esattamente 10 volte. Spesso le variabili contatori vengono chiamate i, j oppure k. E una semplice convenzione.

31

Istruzioni break econtinue

Esistono due istruzioni che permettono di alterare la normale esecuzione dei cicli. Tali istruzioni si chiamano break e
continue. Possono essere utili, ad esempio, quando si utilizzano i cicli per “cercare” qualcosa.

Istruzione break

L'istruzione break interrompe immediatamente I'esecuzione del ciclo e tutte le sue future iterazioni.

f“”tat“ret'tl o In questo esempio, utilizziamo un ciclo while per contare da1a 10. Tuttavia, attraverso un 1f
contatoreg <= 4
(contatore) che verifica se il numero € uguale a 5, utilizziamo l'istruzione break per interrompere

LN immediatamente I'esecuzione del ciclo. In questo modo, il programma stampera i numeri da
contatore += 1 1a 4 e poi si fermera.

Istruzione continue

L'istruzione continue interrompe immediatamente I'esecuzione dell'iterazione corrente, e salta a quella successiva.

contatore =1 In questo esempio, utilizziamo un ciclo while per contare da1a 10. Utilizziamo, pero,
contatore <= 1@:
SIS RS |'istruzione continue per saltare l'iterazione quando il contatore € pari. In questo modo, |l
contatore += 1 . re . \ . . . /e o
programma, quando entrera nell'1 f che verifica se Il contatore e pari, continuera all'iterazione
print {contatore) successiva, senza stampare. Quindi, il programma stampa tutti i numeri dispari da 1a 10.

32

Esercizi suiwhile

®
@

3

Scrivere un programma che esegue un conto alla rovescia partendo da un numero intero fornito in input
dall’'utente e arrivando fino a Q.

Scrivere un sistema di verifica della password. Il programma deve chiedere all’'utente una password e, se la
password é corretta (password = “Pythonata2024”), il pbrogramma deve stampare “Accesso consentito”,
altrimenti, la password deve essere inserita e verificata nuovamente.

Scrivere un programma che simula un processo di controllo qualita in una linea di produzione industriale. |l
programma deve chiedere all'utente di inserire il risultato di un controllo qualita, che pud essere “passato” o
“fallito”. Il programma continua a chiedere i risultati finché non viene inserito “fallito”. Quando un controllo
fallisce, stampare “Prodotto difettoso trovato, linea di produzione fermata.” e terminare il programma. Qualora
'utente dovesse inserire la stringa “escl”, invece, terminare immediatamente Il programma senza ulteriori
messaggi.

Scrivere un programma che continua a chiedere all'utente di inserire numetri interi. Il programma deve
ignorare (non elaborare) i numeri negativi inseriti mentre deve stampare il quadrato di tutti i numeri positivi
inseriti. In altre parole, se Il numero inserito € negativo, il programma non deve fare nulla e chiedere |l
prossimo numero. Se, invece, € positivo, Il programma deve stampare il suo quadrato. Se l'utente inserisce |l
numero O, invece, Il programma deve terminare.

33

Grazieng!

