
Nicolò Bartolini

Pa r t e 3

Strutture di controllo

Argomenti

Bonus: funzione input() e type casting

Le strutture di controllo

Condizionali (if, else, elif)

Ciclo while

Bonus: funzione input() e type casting

Le strutture di controllo

Condizionali (if, else, elif)

Ciclo while

Ogni funzione in Python ritorna sempre un valore. Questo concetto è fondamentale per comprendere appieno il
modo in cui le funzioni devono essere utilizzate.

Abbiamo visto che quando scriviamo noi una funzione, possiamo specificare cosa
ritornerà questa funzione attraverso la parola chiave .return

Nel codice qui sotto, la variabile x conterrà il valore 3, che è il valore di ritorno della
funzione somma con i parametri a e b impostati rispettivamente a 1 e 2. La cosa
da comprendere è che la variabile x contiene quel risultato, non la funzione stessa.

Se non si salva il risultato di una funzione in una variabile, invece, il suo valore di
ritorno viene perso per sempre e diventa inutilizzabile, come nel secondo
esempio qui a sinistra.

Le funzioni ritornano sempre un valore

4

La funzione somma prende due
argomenti a e b e ritorna la loro somma

N.B.: l’istruzione return viene utilizzata soltanto dentro le funzioni create da noi, per specificare cosa ritorna la funzione. Non deve essere usata fuori.

Ritornare significa che la funzione restituisce un valore, quindi è come se al posto del punto in cui la funzione viene chiamata ci fosse il risultato della
sua esecuzione. L’interprete esegue il codice della funzione e utilizza il risultato “per sostituire” il punto in cui viene chiamata.

Quando una funzione, in Python, non possiede al suo interno un’istruzione return, allora questa funzione,
idealmente, non restituisce nulla. Il nulla in Python, però, è il valore , di tipo NoneType. Quindi anche se la
funzione non restituisce nulla, in realtà restituisce None. In questi casi ha senso non assegnare il risultato della
funziona a una variabile.

None

E se volessimo creare una funzione che fa solo delle cose senza restituire niente?
La risposta è che si può fare. Altri linguaggi obbligano l’inserimento della parola chiave return, ma Python no.

Tipo di ritorno

5

Un esempio di funzione che non restituisce nulla è la funzione built-in print(). Questo
tipo di funzioni eseguono delle operazioni (print() stampa qualcosa nello schermo)
ma poi non restituiscono alcun valore. Come possiamo vedere nella figura, l’IDE ci aiuta a
capire qual è il tipo di ritorno di una funzione portandoci il mouse sopra.
Il concetto di tipo di ritorno è fondamentale e fornisce un’ulteriore utilità ai già importantissimi tipi di dati
introdotti nella parte precedente. Infatti, le funzioni, generalmente, possiedono un tipo di ritorno che indica di che
tipo sarà il valore che viene restituito dalla funzione stessa. Questa cosa è fondamentale per capire come si
deve lavorare con il dato che restituisce la funzione. Ad esempio, se una funzione restituisce un booleano, non si
potrà usare per fare un’addizione.

La funzione built-in input() è una funzione che permette di introdurre dell’interattività all’interno dei propri
programmi in Python. Il suo scopo è quello di raccogliere dati dall’utente.

Introduciamo la firma delle funzioni, attraverso la quale possiamo comprendere come utilizzarle. Portando il mouse
su una funzione built-in, l’IDE ci fornisce delle informazioni nella seguente forma:

Quindi, la funzione , è una funzione che accetta un unico parametro chiamato , di tipo
(per ora consideriamo che sia di tipo), il quale possiede un valore di default pari a , ovvero una stringa
vuota e che come tipo di ritorno ha , quindi restituisce sempre un valore di tipo stringa.

input() prompt object
stringa “”

str
Quando un parametro di una funzione possiede un valore di default, significa che quel parametro può essere
omesso quando la funzione viene chiamata e, se viene omesso, assume automaticamente quel valore.

L’IDE ci sta
informando che si

tratta di una funzione

Nome
della

funzione

Nome del
parametro

Tipo del parametro
(ignorate object)

Valore di
default del
parametro

Tipo di
ritorno della

funzione

E le nc o de i pa ra me tri (in q ue sto ca so 1)

() (: =) -> function def input prompt object "" str

La funzione built-in input()

6

Come abbiamo detto, la funzione built-in input() viene utilizzata per raccogliere dei dati dall’utente. Abbiamo
anche visto che possiede un parametro opzionale chiamato prompt. Questo prompt serve per stampare sul
terminale una stringa a propria scelta. Dunque, quello che fa la funzione input() è stampare l’eventuale prompt (o
non stampare nulla se prompt non viene specificato) e poi mettersi in ascolto di qualcosa scritto dall’utente.
Quando l’utente scrive qualsiasi cosa e poi clicca invio, allora la funzione input() restituisce una stringa contenente
ciò che ha scritto l’utente.

Eseguendo questo codice, nel terminale comparirà:

Il rettangolo finale (nel mio caso giallo, ma nel vostro potrebbe essere diverso) indica che il programma è in attesa
di qualcosa inserito dall’utente. L’inserimento di quel qualcosa e il clicco su “Invio” farà proseguire il codice e
inserirà la stringa contenente ciò che ha inserito l’utente all’interno della variabile qualcosa_ottenuto_da_utente.

Utilizzo della funzione input()

7

Creiamo una variabile chiamata
qualcosa_ottenuto_da_utente

Operatore di assegnamento

Inseriamo dentro la variabile il valore che viene restituito dalla
funzione input() chiamata con il parametro prompt pari a

“Ciao utente, inserisci qualcosa: “
Lo spazio vuoto alla fine della stringa viene utilizzato per motivi estetici.

Omettendolo, infatti, il testo inserito dall’utente sarebbe appiccicato al prompt.

Nella slide 6, abbiamo analizzato la firma della funzione input(), osservando che ha come tipo di ritorno . Ciò
significa che tutto ciò che restituisce la funzione input() è sempre di tipo . Utilizziamo questa caratteristica
per introdurre il concetto di type casting (o casting di tipo).

str
str

Supponiamo di voler far inserire dall’utente due numeri e di volerli sottrarre. Per fare ciò utilizziamo due volte la
funzione input() chiedendo due numeri all’utente e poi printiamo la loro differenza, come nel codice seguente.

Per risolvere queste problematiche si
effettua il cosiddetto type casting,
ovvero una conversione forzata di un
valore in uno specifico tipo. 
Ovviamente, il valore che si vuole
convertire deve essere convertibile. Ad
esempio, non si può convertire la
stringa “quaranta” in un int, così come
non si può convertire la stringa “40 1”.
Invece, si può convertire la stringa “12”.

C’è uno spazio in mezzo.

Osserviamo, però, che l’esecuzione del codice porta a un errore di
tipo, indicando che l’interprete non riesce ad eseguire una
sottrazione tra due valori di tipo .str

Type casting

8

https://www.figma.com/slides/2NDNOQiNbXBcNpRNlzhW2y/3---Strutture-di-controllo?node-id=2001-16

Per effettuare operazioni di type casting (d’ora in avanti lo chiameremo solo “casting”), Python fornisce delle
funzioni built-in che si chiamano come il tipo verso cui effettuare il casting.

� La funzione () restituisce il valore convertito in
tipo . Il valore da convertire può essere un (restituisce lo stesso numero), un

 (restituisce lo stesso numero senza parte decimale) o una (cerca di
verificare la presenza di numeri all’interno della stringa e se li trova li restituisce in tipo

)�
� La funzione () restituisce il valore convertito

in tipo . Il comportamento è analogo a quello della funzione �
� La funzione () restituisce il valore convertito in

tipo . Il valore da convertire può essere qualsiasi tipo di valore, quindi un , un
, una , un , un , ma anche altri tipi che scopriremo più avanti�

� La funzione () restituisce il valore convertito
in tipo . Questa funzione restituisce sempre , tranne quando

 è un int pari a , un float pari a , una stringa vuota () oppure un
, casistiche in cui restituisce .

int
int int

int

int()

int

0

da_convertire da_convertire

da_convertire da_convertire

da_convertire da_convertire

da_convertire da_convertire

da_convertire

float

float
float

float

0.0

str

str
str

str

“”

bool
bool

bool

None

None

True

False

Come si effettua il type casting in Python?

9

Ora che abbiamo introdotto il casting, come possiamo risolvere il problema che abbiamo incontrato nella slide 8
con la funzione input()?

La risposta risiede, ovviamente, nel castare le variabili che contengono il risultato della funzione input() a un tipo
numerico. Scegliamo, in modo casuale, di voler lavorare con i . Dunque, possiamo utilizzare la funzione
per castare in i valori inseriti dall’utente, che sono restituiti da input() sotto forma di . Il codice, diventa:

float float()
float str

Per rendere il tutto più compatto, si può anche passare il risultato di input() direttamente alla funzione float()
e inserire il risultato della funzione float() direttamente durante la creazione delle variabili, nel seguente modo:

Come risolvere il problema di input()?

10

https://www.figma.com/slides/2NDNOQiNbXBcNpRNlzhW2y/3---Strutture-di-controllo?node-id=2003-148

Esempio dell’utilizzo di input()

11

Problema: Scrivere un programma che effettua semplici calcoli. Il programma deve�
�� Scrivere un messaggio di benvenuto all’esecuzione, chiedendo il nome dell’utente e poi salutarlo�

�� Chiedere all’utente tre numeri qualsiasi�
�� Sommare i tre numeri e mostrare il risultato all’utente�
�� Chiedere un quarto numero all’utente�
�� Sottrarlo alla somma fatta precedentemente e stampare il risultato di tale sottrazione�
�� Salutare l’utente.

Note e consigli aggiuntivi�
� Commentare adeguatamente il codice per esplicare chiaramente tutti i passaggi svolti. Questa richiesta è utile

per abituarsi a scrivere commenti nel codice, molto importanti�
� Utilizzare dei print() intermedi che non sono richiesti nella consegna principale, se necessario. Questi print()

possono tornare molto utili quando non si capisce perché il programma si comporta in modo anomalo�
� Rendere il programma “accessibile”, spiegando chiaramente, attraverso le stampe, quello che si richiede

all’utente e quello che si mostra all’utente�
� Si suppone che l’utente non si comporti in modo anomalo e che quindi, se gli viene richiesto di inserire un

numero intero, egli inserisca davvero un numero intero.

Soluzione dell’esempio

12

Ricordiamoci che un programma è una sequenza di istruzioni. Quindi, svolgiamo l’esercizio ragionando istruzione
per istruzione leggendo, step dopo step, la consegna.

Abbiamo suddiviso lo step 1 della consegna in due sotto-step, che sono le possibili istruzioni per Python. Per
implementare lo step 1.1 possiamo utilizzare la funzione input() sia per dare il benvenuto all’utente che per
memorizzare il suo nome. Il codice è, quindi, il seguente:

Per quanto riguarda lo step 1.2, è sufficiente utilizzare la funzione print() per salutare l’utente utilizzando il suo
nome, che abbiamo memorizzato nella variabile nome_utente.

Notiamo l’attenzione posta nell’”accessibilità”, stampando delle stringhe che siano ben formate e ben scritte (es.:
maiuscole corrette e spazi vuoti alla fine degli input), caratteristiche che sono inutili ai fini del nostro esercizio, ma
che è bene apprendere per scrivere programmi che non facciano sentire l’utente come un pesce fuor d’acqua.

“Step 1: Il programma deve (1.1) scrivere un messaggio di benvenuto all’esecuzione, chiedendo il
nome dell’utente e poi (1.2) salutarlo.”

N.B.: Vi ricordo che se un problema è risolvibile, lo è in infiniti modi.
Quindi ci sono infinite soluzioni corrette. Questa è solo la mia

soluzione, una tra le infinite possibili.

Soluzione dell’esempio

13

In questo caso non abbiamo sotto-step, quindi possiamo direttamente tradurre la consegna in Python.

Come è specificato anche nei commenti, io ho scelto di printare una stringa che chiede all’utente direttamente di
inserire tre numeri qualsiasi. Per questo motivo mi è sembrato superfluo chiedere nuovamente il numero da inserire
nel prompt di ogni input. Tuttavia, questa è una scelta totalmente stilistica che non intacca minimamente il
funzionamento del programma e il raggiungimento dell’obiettivo.
Un’altra cosa che può essere fatta in modo diverso è il casting. Infatti, io ho effettuato il casting della stringa
ottenuta dagli input() a float passando direttamente la funzione input() alla funzione float(). Come
abbiamo visto nella slide 10, si può fare anche separatamente senza intaccare il funzionamento del programma.

“Step 2: Il programma deve chiedere all’utente tre numeri qualsiasi.”

N.B.: Vi ricordo che se un problema è risolvibile, lo è in infiniti modi.
Quindi ci sono infinite soluzioni corrette. Questa è solo la mia

soluzione, una tra le infinite possibili.

https://www.figma.com/slides/2NDNOQiNbXBcNpRNlzhW2y/3---Strutture-di-controllo?node-id=2004-207

Soluzione dell’esempio

14

Possiamo risolvere lo step 3.1 in una riga e lo step 3.2 in un’altra. Il codice è il seguente:
“Step 3: Il programma deve (3.1) sommare i tre numeri e (3.2) mostrare il risultato all’utente.”

“Step 4: Il programma deve chiedere un quarto numero all’utente.”

N.B.: Vi ricordo che se un problema è risolvibile, lo è in infiniti modi.
Quindi ci sono infinite soluzioni corrette. Questa è solo la mia

soluzione, una tra le infinite possibili.

Notiamo, nell'input() qui sopra, che abbiamo effettuato la concatenazione della stringa prompt, non attraverso
le virgole (come nei print), ma attraverso la somma di stringhe. Questo perché la concatenazione di stringhe
tramite virgole è disponibile solo nella funzione print() e non nella funzione input().

Osservazione importante: se avessimo dovuto inserire tra le stringhe una variabile contenente un numero,
avremmo dovuto castarlo a stringa con la funzione . Ad esempio:
str()

Soluzione dell’esempio

15

Anche in questo caso, la soluzione è rapida:

Dopo tutti gli step precedenti, questo è un gioco da ragazzi:

Tuttavia, visto che non dobbiamo più utilizzare questo risultato in parti successive del codice, possiamo evitare la
creazione di una nuova variabile e risolvere questo step in un’unica riga:

“Step 5: Il programma deve (5.1) sottrarlo alla somma fatta precedentemente e (5.2) stampare il risultato di tale sottrazione.”

N.B.: Vi ricordo che se un problema è risolvibile, lo è in infiniti modi.
Quindi ci sono infinite soluzioni corrette. Questa è solo la mia

soluzione, una tra le infinite possibili.

“Step 6: Il programma deve salutare l’utente.”

Altri esercizi

16

② Scrivere un programma che permetta di calcolare l’area di un triangolo (o di un’altra forma geometrica). Il
programma deve reperire dall’utente i dati di cui ha bisogno, effettuare il calcolo e mostrare il risultato.

① Scrivere un programma che permetta di convertire un valore in una specifica unità di misura in un’altra unità
di misura. Le unità di misura di partenza e di arrivo devono essere predeterminate, ovvero si chiede all’utente
di inserire un valore, ad esempio, in miglia e il programma lo converte in kilometri. Dunque, il programma non
deve funzionare in base all’unità di misura inserita dall’utente, ma è il programma stesso a specificare l’unità
di misura richiesta.

Propongo altri esercizi da svolgere sull’argomento input() e casting. Sono sempre la “stessa solfa” di quello
appena descritto, però svolgerli aiuta ad abituarsi a scrivere codice e a capire meglio come funziona il tutto.

Scrivere un programma che permetta di calcolare il valore futuro di un investimento. Il programma deve
accettare, da parte dell’utente, il quantitativo di denaro da investire, il tasso di interesse e il numero di anni di
durata dell’investimento. Il programma deve calcolare il quantitativo di denaro che si avrà dopo il numero di
anni inserito con il tasso di interesse inserito.

③

N.B.: Ogni stampa nel terminale deve essere esplicativa e chiara. Ad esempio, è meglio non eseguire
print(area_triangolo), ma eseguire print(“L’area del triangolo è: “, area_triangolo).

Bonus: funzione input() e type casting

Le strutture di controllo

Condizionali (if, else, elif)

Ciclo while

Flusso di esecuzione di un programma

18

Finora abbiamo visto programmi che eseguono un elenco di istruzioni sequenzialmente, dalla prima all’ultima. Il
modo in cui un programma esegue le istruzione è chiamato flusso di esecuzione. Il flusso che abbiamo incontrato
finora è quello schematizzato nell’immagine seguente:

Tuttavia, anche considerando gli esercizi svolti e proposti nella sezione precedente, è evidente che con questo
approccio limitato, le opzioni per la creazione di programmi sono estremamente limitate. In pratica, poiché il flusso
del programma è unidirezionale, tutti i programmi scritti in questo modo risultano essere sostanzialmente simili,
seppur contestualizzati in modi differenti.

Naturalmente, il processo di programmazione non si limita a questo punto. Al contrario, questo rappresenta appena
l'inizio di un lungo percorso. A questo punto entrano in gioco le strutture di controllo, che consentono di
modificare radicalmente il funzionamento finora esaminato e di aprire le porte a innumerevoli nuove opportunità
di sviluppo.

L’utente inserisce
un primo numero

Il numero viene
memorizzato in una

variabile numero1

L’utente inserisce
un secondo

numero

Si effettua la
differenza tra i due

numeri

Si stampa il
risultato sullo

schermo

Il numero viene
memorizzato in una
variabile numero2

Le strutture di controllo

19

Le strutture di controllo sono elementi fondamentali della
programmazione. Esse consentono di modificare il normale flusso di
esecuzione di un programma, indirizzandolo verso percorsi diversi da
quello tradizionale finora esaminato. Questo significa che possono
influenzare significativamente il comportamento del software.

Le strutture di controllo si suddividono principalmente in due categorie:
condizionali e cicli. Le strutture condizionali modificano il flusso del
programma in base al valore di verità di condizioni specificate (booleani).
I cicli, invece, consentono al programma di iterare (ripetere più volte) su
un insieme di istruzioni, ripetendo l'esecuzione fino al soddisfacimento di
determinate condizioni di uscita.

In Python, la struttura condizionale è l’ , arricchito con le istruzioni
ed .

if else
elif

L’utente inserisce un
numero intero

Stampa che il numero
è positivo

Stampa che il numero
è negativo

Il numero è >
0?

Sì No

numero = 0

numero += 1

Finché il
numero è < 10

I cicli di Python, invece, sono il ciclo e il ciclo .while for

Bonus: funzione input() e type casting

Le strutture di controllo

Condizionali (if, else, elif)

Ciclo while

Le strutture condizionali

21

Le strutture condizionali sono gli strumenti essenziali
che permettono al programma di “prendere decisioni”. A
livello tecnico, le strutture condizionali eseguono diversi
blocchi di codice in base al valore di verità di una
specifica condizione. In altre parole, in base al valore
booleano della condizione (True o False), il blocco di
codice corrispondente viene o non viene eseguito.

Il vantaggio dell’utilizzo delle strutture condizionali è che
permette di rispondere dinamicamente agli input che,
per definizione, sono dinamici. Un ulteriore vantaggio è
che il codice, con l’utilizzo delle strutture condizionali, è
ovviamente più intelligente e flessibile e si adatta a
molteplici situazioni, piuttosto che seguire un ordine
preciso, prestabilito e immutabile.

L’utente inserisce la
sua età

L’utente è minorenne

L’età è < 18?
Sì No

L’utente è
maggiorenne

L’utente c’ha una
certa età

L’età è < 70?
Sì No

L’istruzione if

22

L’istruzione verifica il valore di verità di una specifica e, se tale valore risulta vero (), allora
esegue il blocco di codice corrispondente.

La sintassi è la seguente:

if condizione True

Una è un’espressione che verifica la verità di qualcosa, generalmente confrontando due valori o
confrontando più condizioni. Esempi di condizione:

condizione

16 16 12 3 9 9 13 18== == >= == > <“a” ‘a’ “Sì” “sì”+ + età etàand

 True True False False Dipende da variabile età

if
se

 :

condizione
condizione<blocco di codice da eseguire la è >True

1

2

Notiamo che sono presenti 4 spazi (una tabulazione) che, come ricordiamo dal modo in cui si creano le funzioni,
definiscono, in Python, un blocco di codice indentato.

L’istruzione else

23

L’istruzione , che si traduce con “altrimenti”, è un’istruzione che viene aggiunta all’istruzione if e permette di
eseguire un blocco di codice quando la condizione dell’if risulta falsa.

La sintassi è la seguente:

else

Di seguito un esempio dell’utilizzo della struttura if-else:

if
se

else
altrimenti

 :

condizione
condizione<blocco di codice da eseguire la è >

 <blocco di codice da eseguire >

True
:

1

2

3

4

L’istruzione elif

24

L’istruzione , che sta per “else if”, è un’istruzione che viene aggiunta all’istruzione if e permette di eseguire un
blocco di codice quando la condizione dell’if risulta falsa e si vuole verificare un’ulteriore condizione. Deve
essere aggiunta prima di un eventuale else, che non è obbligatorio.

La sintassi è la seguente:

elif

Come già specificato, le righe 5 e 6 non sono obbligatorie.

Inoltre, si possono avere molteplici elif all’interno di una struttura if.

if
se

elif
se

else
altrimenti

 :

:

condizione
condizione

condizione2
condizione2

<blocco di codice da eseguire la è >

 <blocco di codice da eseguire la è >

<blocco di codice da eseguire >

True

True
:

1

2

3

4

5

6

if annidati

25

È possibile annidare molteplici strutture if (-elif-else) all’interno di strutture già esistenti. Questa pratica è
molto utile per evitare di scrivere condizioni troppo lunghe e complesse. Tuttavia, è bene utilizzarla con
parsimonia, per evitare che il codice diventi una scaletta di if, risultando poco leggibile: è meglio non andare oltre
i 5 if annidati.

Esercizi sugli if da svolgere insieme

26

② Scrivere un programma che, a partire da due numeri interi inseriti dall’utente, dica qual è il numero maggiore
tra i due oppure se sono uguali.

②b Scrivere lo stesso programma, ma con tre numeri accettati dall’utente.

① Scrivere un programma che, a partire da un numero intero inserito dall’utente, dica se tale numero è pari o
dispari.

Scrivere un programma che chieda all’utente una stringa composta da un solo carattere. Se la stringa fornita
dall’utente è più lunga di un carattere restituire un errore e terminare il programma. Altrimenti printare se la
stringa è una vocale oppure no.

③

Scrivere un programma che chieda all’utente il suo reddito annuo e calcoli l’ammontare delle tasse dovute
basandosi su semplici fasce di reddito�

� Redditi fino a 10.000€: esenti da tasse�
� Redditi superiori a 10.000€ e fino a 20.000€: tassati al 10%�
� Redditi superiori a 20.000€ e fino a 30.000€: tassati al 20%�
� Redditi superiori a 30.000€: tassati al 30%.

Il programma deve mostrare l’ammontare delle tasse dovute secondo le suddette regole.

④

Esercizione

27

Creare un’applicazione bancaria che permette di effettuare un prelievo o un deposito monetario�
�� Il programma deve permettere di effettuare il login chiedendo, separatamente, il nome utente e la password. Ci

sono solo due utenti registrati (vedi sotto). Se il nome utente o la password sono errati (= la coppia non è
corretta oppure il nome utente non esiste), printare un messaggio di errore e terminare il programma�

�� Se il login è corretto, stampare il bilancio attuale del conto e chiedere se l’operazione desiderata è “prelievo” o
“deposito”. Qualunque altro inserimento risulta nella terminazione del programma con un print di errore.

Aiutino: op = input(“Prelievo (p) o deposito (d)? “) # L’utente quindi deve inserire la
stringa “p” o “d”, tutto il resto non è valid�
�� Se l’operazione è di deposito, chiedere la cifra (si assume che l’utente non faccia lo stupido e inserisca sempre

un numero intero), aggiornare il totale del conto e stamparlo a video, terminando poi il programma�
�� Se l’operazione è di prelievo, invece, chiedere la cifra (anche qui si assume che l’utente inserisca sempre un

numero intero) e verificare che il bilancio sia sufficiente. Se lo è detrarlo dal totale e stampare il nuovo bilancio a
video, terminando poi il programma. Se non lo è terminare il programma con un messaggio di errore.

DATABASE:

user1 = “nick” psw1 = “ildrugodrago12” bilancio1 = 200

user2 = “biero” psw2 = “FerrariPurosangue” bilancio2 = 3000

user2 = “ElonioMuschio” psw2 = “mars_emperor” bilancio2 = 10000

Bonus: funzione input() e type casting

Le strutture di controllo

Condizionali (if, else, elif)

Ciclo while

I cicli

29

I cicli sono fondamentali per consentire al programma di ripetere
operazioni (iterare) in modo efficiente. Dal punto di vista tecnico, i cicli
eseguono un blocco di codice ripetutamente fintanto che una
condizione specifica è soddisfatta (True). In sostanza, quando la
condizione è True, il blocco di codice viene eseguito e la condizione viene
nuovamente valutata. Se la condizione rimane True, il blocco di codice
viene ripetuto, continuando così fino a quando la condizione risulta True.

Il vantaggio dell’utilizzo dei cicli è che permettono di automatizzare e
semplificare compiti che richiederebbero ripetizioni di codice. In Python
esistono due cicli: il ciclo e il ciclo . Il ciclo si basa sulla
valutazione di una condizione booleana. Il ciclo for, invece, è quello che in
altri linguaggi di programmazione si chiama for-each. Infatti, non si basa
sulla valutazione di una condizione booleana, ma sull’esplorazione di tutti
gli elementi di una specifica struttura dati, ad esempio una lista. Per
questo motivo, analizzeremo il ciclo for separatamente.

while for while

contatore = 0

L’utente inserisce un
numero

Stampa il doppio del
numero

Finché
contatore <=

numero

Il ciclo while

Loop infinito

30

L’istruzione verifica il valore di verità di una specifica e, se tale valore risulta vero (), allora
esegue il blocco di codice corrispondente. Dopo tale esecuzione, la viene nuovamente valutata e, se
risulta di nuovo , il blocco di codice viene rieseguito. Ciò succede fintantoché la condizione risulta .

La sintassi è la seguente:

while condizione
condizione

True

True True

Il ciclo può causare l’entrata in un loop (ciclo) infinito. Se la risulta sempre senza poter
essere modificata, infatti, l’esecuzione del blocco di codice contenuto all’interno del ciclo si ripeterà all’infinito. Ciò
può essere un problema, ma in alcune situazioni, invece, può essere necessario, come vedremo.

while condizione True

while
se

 :

condizione
condizione<blocco di codice da eseguire la è >True

1

2

while :

True
<blocco di codice eseguito indefinitamente>

1

2

Per terminare l’esecuzione di un
programma in loop infinito, si deve

utilizzare la combinazione di tasti Ctrl+C

Variabile contatore

31

La modalità in cui è stata introdotta la struttura del ciclo while potrebbe far pensare che venga utilizzata solo con
condizioni booleane complesse e ben definite. Questo è certamente vero. Tuttavia, il ciclo while viene
maggiormente impiegato quando si desidera eseguire un blocco di codice un numero specifico di volte. Per
ottenere questo risultato, di solito si utilizzano delle variabili dedicate, comunemente chiamate contatori. Queste
variabili sono interi inizializzati a 0 e il loro valore viene modificato all'interno del ciclo (incrementato o
decrementato) fino a quando diventa maggiore o minore di un numero specifico. In questo modo, il ciclo viene
eseguito un numero preciso di volte.

In questo modo, finché la variabile sarà minore di 10, il blocco di codice verrà eseguito a ripetizione.
Allo stesso tempo, essendo inizializzata a 0 e incrementata (+=) di 1 ad ogni iterazione, il blocco di
codice verrà eseguito esattamente 10 volte.

contatore
contatore

contatore
contatore

contatore

while

=
<

0

10

10
1

 :

+=
<blocco di codice da eseguire volte>

1

2

3

4

L'espressione contatore < 10 rappresenta
comunque una condizione booleana. Questa

specifica sui contatori viene fornita per illustrare
l'uso comune dei cicli while. Dal punto di vista
sintattico, il funzionamento rimane invariato.

Spesso le variabili contatori vengono chiamate i, j oppure k. È una semplice convenzione.

Istruzioni e break continue

32

Esistono due istruzioni che permettono di alterare la normale esecuzione dei cicli. Tali istruzioni si chiamano break e
continue. Possono essere utili, ad esempio, quando si utilizzano i cicli per “cercare” qualcosa.

L’istruzione interrompe immediatamente l’esecuzione del ciclo e tutte le sue future iterazioni.break
Istruzione break

L’istruzione interrompe immediatamente l’esecuzione dell’iterazione corrente, e salta a quella successiva.continue

In questo esempio, utilizziamo un ciclo while per contare da 1 a 10. Utilizziamo, però,
l’istruzione per saltare l’iterazione quando il contatore è pari. In questo modo, il
programma, quando entrerà nell’ che verifica se il contatore è pari, continuerà all’iterazione
successiva, senza stampare. Quindi, il programma stampa tutti i numeri dispari da 1 a 10.

continue
if

In questo esempio, utilizziamo un ciclo while per contare da 1 a 10. Tuttavia, attraverso un
che verifica se il numero è uguale a 5, utilizziamo l’istruzione per interrompere
immediatamente l’esecuzione del ciclo. In questo modo, il programma stamperà i numeri da
1 a 4 e poi si fermerà.

if
break

Istruzione continue

Esercizi sui while

33

② Scrivere un sistema di verifica della password. Il programma deve chiedere all’utente una password e, se la
password è corretta (password = “Pythonata2024”), il programma deve stampare “Accesso consentito”,
altrimenti, la password deve essere inserita e verificata nuovamente.

① Scrivere un programma che esegue un conto alla rovescia partendo da un numero intero fornito in input
dall’utente e arrivando fino a 0.

Scrivere un programma che simula un processo di controllo qualità in una linea di produzione industriale. Il
programma deve chiedere all’utente di inserire il risultato di un controllo qualità, che può essere “passato” o
“fallito”. Il programma continua a chiedere i risultati finché non viene inserito “fallito”. Quando un controllo
fallisce, stampare “Prodotto difettoso trovato, linea di produzione fermata.” e terminare il programma. Qualora
l’utente dovesse inserire la stringa “esci”, invece, terminare immediatamente il programma senza ulteriori
messaggi.

③

Scrivere un programma che continua a chiedere all’utente di inserire numeri interi. Il programma deve
ignorare (non elaborare) i numeri negativi inseriti, mentre deve stampare il quadrato di tutti i numeri positivi
inseriti. In altre parole, se il numero inserito è negativo, il programma non deve fare nulla e chiedere il
prossimo numero. Se, invece, è positivo, il programma deve stampare il suo quadrato. Se l’utente inserisce il
numero 0, invece, il programma deve terminare.

④

Grazieng!Grazieng!

